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Abstract. We present a generalizable novel view synthesis method which
enables modifying the visual appearance of an observed scene so ren-
dered views match a target weather or lighting condition without any
scene specific training or access to reference views at the target con-
dition. Our method is based on a pretrained generalizable transformer
architecture and is fine-tuned on synthetically generated scenes under
different appearance conditions. This allows for rendering novel views in
a consistent manner for 3D scenes that were not included in the training
set, along with the ability to (i) modify their appearance to match the
target condition and (ii) smoothly interpolate between different condi-
tions. Experiments on real and synthetic scenes show that our method is
able to generate 3D consistent renderings while making realistic appear-
ance changes, including qualitative and quantitative comparisons. Please
refer to our project page for video results: https://ava-nvs.github.io

Keywords: 3D Style transfer · Generalizable Novel View Synthesis ·
NeRFs.

1 Introduction

The field of novel view synthesis has seen rapid progress in the last few years
after the success of Neural Radiance Fields (NeRFs) [25] and follow-up works
[26,24,1]. A desired quality for these types of 3D scene representations is to
be able to disentangle different scene properties from each other, for instance,
being able to change the visual appearance without changing the content of the
scene. There exists some works in this direction [24,36], but they are limited to
interpolating between observed visual appearances of the 3D scene, thus requiring
images of the scene with the desired visual appearance. In contrast, we develop
a method that is able to generalize to 3D scenes not used in training, and that
thus can adjust the appearance of a scene without having access to any images
of that scene at the target visual appearance, see Fig. 1.

For traditional NeRF-based methods, the properties of the 3D scene are
encoded in the weights of a multilayer perceptron (MLP), so each trained model

ar
X

iv
:2

30
6.

01
34

4v
3 

 [
cs

.C
V

] 
 2

6 
Ja

n 
20

24

https://ava-nvs.github.io


2 Josef Bengtson et al.

Scene Observations 3D Scene Representation Novel Views with Adjusted Appearance

Fig. 1: Given multiple views of a scene in one weather and lighting condition, we
want to generate novel views of the given scene with adjusted visual appearance
corresponding to a target condition without scene specific optimization.

is exclusive to that particular scene. A main challenge is thus that a separate
optimization process has to be performed for each individual scene. One approach
to handle this is to find ways to improve the efficiency of the training process
[26,21]. A different approach is to avoid per-scene training and instead train
cross-scene generalizable methods [46,43,5,23,35], which are able to synthesize
novel views of a scene given just images and corresponding camera poses, and
do not require expensive scene-specific optimization.

We present a generalizable novel view synthesis method that allows for chang-
ing the visual appearance of a scene while ensuring multi-view consistency. For
this we build upon Generalizable NeRF Transformer (GNT) [35], a transformer-
based [39] novel view synthesis method. Specifically, we introduce a latent ap-
pearance variable to enable the control of the visual appearance of rendered
views. By using a generalizable NeRF model and the introduced latent appear-
ance variable, we are able to render novel views and change the appearance of
scenes that are not seen when training our model without the need for obser-
vations of the scene at the target appearance. We will release code and trained
models.

In summary, our main contributions are:

– We introduce a method that allows for changing the appearance of a novel
scene, while ensuring multi-view consistency, by using a latent appearance
variable conditioned on a target visual appearance.

– We propose a novel loss function which is designed to align the views rendered
with a target appearance to the scene observed in that target condition,
which enables jointly learning novel view synthesis and appearance change.

– We create a synthetic dataset containing urban scenes, with each scene avail-
able at four different diverse weather and lighting conditions. The dataset
is used for training our model for visual appearance change and enables
quantitative evaluation. The dataset will be made publicly available.

2 Related work

Here we will review progress on NeRFs, focusing on generalizable methods. We
will then review 2D style transfer methods and stylized NeRFs methods.
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Neural Radiance Fields. NeRFs [25] synthesize consistent and photo-realistic
novel views of a scene, by representing each scene as a continuous 5D radiance
field parameterized by an MLP mapping 3D positions and 2D viewing directions
to volume densities and view-dependent emitted radiances. Views are synthesized
by querying points along camera rays and and utilizing volumetric rendering to
aggregate the output colors and densities into RGB values. There have been
several works improving NeRFs further, e.g. to improve the efficiency [26,21]
and handling few input views [46,27].

Generalizable Novel View Synthesis. The original NeRF methodology is con-
strained to training a neural network for representing a single scene, optimizing
from scratch for each new scene, without leveraging any prior knowledge. Meth-
ods for generalizable neural rendering address this limitation by training on mul-
tiple scenes, enabling the learning of a general understanding of how to utilize
source observations to synthesize novel views. Earlier methods such as [46,5] use
a multilayer perceptron (MLP) conditioned on feature vectors extracted from the
source images to predict color and radiance values which are aggregated with vol-
umetric rendering. To enhance generalization capabilities and rendering quality,
recent approaches have incorporated transformer-based architectures [39,9] for
feature aggregation from the source images [23,42], computing densities along
the camera ray [43], and even for the entire rendering pipeline [34,35,33,11].
While these methods have demonstrated impressive rendering quality, they are
currently incapable of modifying the appearance of the rendered views.

2D Style Transfer. The success of Generative Adversarial Networks (GANs) [13]
has largely driven advances in 2D style transfer. Methods such as Pix2Pix [20],
Pix2Pix-HD [44], and BicycleGAN [50] utilize paired training data, which con-
sists of corresponding images in the source and target conditions. CycleGAN [49]
and CyEDA [2] employ cycle-consistency constraints to learn from unpaired
data. NICE-GAN [6] reuses the discriminator for encoding the images of the
target domain. In addition to GANs, the style-attentional network (SANet) [28]
can synthesize a content image with the style of another image. Diffusion mod-
els [8,17] have recently achieved superior results in image generation. Palette [32]
introduced the first diffusion-based paired image-translation model, and Diffu-
seIT [22] recently presented a diffusion-based unsupervised image translation
method. Instruct-Pix2Pix [3] re-trains a latent diffusion model [30] using paired
images generated by prompt-to-prompt [16] and massive instructions generated
by GPT-3 [4] to facilitate instruction-based style transfer. While the images
translated by these 2D style transfer methods can individually appear realistic,
they do not ensure temporal consistency. In contrast, our method inherently
ensures 3D consistency. We experimentally compare our results with 2D style
transfer methods applied frame by frame on rendered views.

Visual Appearance Change for NeRF Models. Prior work to enable changing
the visual appearance of a NeRF model [24,36] typically assign an appearance
embedding vector to each image which affect the appearance but not geometry,
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and is optimized alongside the NeRF model parameters. In [24], low dimensional
embeddings allows for smooth interpolation between lighting conditions. One
limitation of this approach is that it requires access to images of the scene at
both lighting conditions as input. In contrast, our method is a generalizable
method that does not require images at both lighting conditions as input when
rendering novel views with changed visual appearance. Another line of research
is to edit the style of a NeRF model based on a given style prompt [18,14,19,47]
typically given as a reference image. More recent works [40,41] use the joint
language-image embedding space of CLIP [29] to enable specifying the desired
style using a text prompt. These methods focus on artistic style changes and
have thus not been specifically trained and evaluated on realistic appearance
changes such as differences in weather or lighting, in contrast to our method. The
recent method Instruct-NeRF2NeRF [15] enables editing a NeRF model based
on a text-prompt, by iteratively updating dataset images using a pretrained
2D editing model [3]. This method allows for a variety of appearance changes
since they utilize pre-trained diffusion models to perform the editing, but they
require training per-scene NeRF models and additional per-scene optimization,
in contrast to our method that does not require per-scene training.

3 Method

We now give an overview of Generalizable NeRF Transformer (GNT) [35] and
present our method for adjusting the visual appearance of synthesized views.

3.1 Basics of GNT

GNT utilizes a two-stage transformer-based architecture that allows for novel
view synthesis from source views. The first stage is a view transformer that
aggregates information from neighboring views using epipolar geometry. The
second stage is a ray transformer that performs rendering.

View Transformer. The view transformer computes a coordinate aligned feature
field F : (x, θ) → f ∈ Rd that maps a 3D position x and viewing direction θ to
a feature vector f . Firstly each source view is encoded to a feature map using a
U-Net [31] Image Encoder Fi = U-Net(Ii). The feature representation of a 3D
point x is obtained by projecting it to every source image via the projections
Πi(x) and fetching the corresponding value of Fi. The view transformer (VT)
is then used to combine all these feature vectors through attention as

F(x, θ) = VT(F1(Π1(x), θ), · · · ,FN (ΠN (x), θ)). (1)

Ray Transformer. The ray transformer aggregates information along a given
camera ray by performing attention between feature values fi = F(xi, θ) on the
ray. The GNT pipeline consists of stacking several view and ray transformers,
which iteratively refines the feature field. The final ray transformer computes
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Fig. 2: Overview of our method for changing visual appearance of synthesized
novel views. A target view direction is chosen and camera rays r are cast and
the corresponding source views Is,c are used to generate a scene representation.
A latent appearance variable zc′ is included with the goal of adapting the ap-
pearance of the rendered image to match the target view. If the target view is
at a different weather or daylight conditions (c ̸= c′) then this means adapting
the visual appearance to match that found in the target view It,c′ instead of the
visual appearance of the source views Is,c.

the RGB value C(r) corresponding to a camera ray r by feeding the sequence of
feature vectors along the ray {f1, · · · , fM} into the ray transformer, performing
mean pooling followed by an MLP as

C(r) = MLP ◦ Mean ◦ RT(f1, . . . , fM ). (2)

This enables training the method using the standard color prediction loss
term commonly used by NeRFs. The attention values from the ray transformer
correspond to the importance of each feature vector fi along the ray, filling a
similar role as the opacity in a traditional NeRF method.

3.2 Adjusting Visual Appearance

To change the visual appearance of rendered views to match a target appearance,
we propose to introduce a latent appearance variable zc′ as an additional input
to the ray transformer, to condition the rendering on the target appearance. The
proposed architecture can be seen in Fig. 2.

The latent variable should correspond to a predefined appearance condition
and the value for each condition is jointly optimized with the rest of the network.
Since our goal is to change the visual appearance, we include zc′ so that the
geometry is kept unchanged. To ensure this, it is used to update the value-
tokens in the ray transformer while keeping the attention values unchanged, i.e.,
Vc′ = fz([V ; zc′ ]) where fz is a single layer MLP that takes in the original value
tokens V concatenated with the latent appearance variable zc′ and generates
new value tokens Vc′ . This enables computing a visual appearance change loss,

Lappearance =
∥∥∥C(r, Is,c, zc′)− Ĉ(r, It,c′)

∥∥∥2
2
. (3)
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Input Condition Evening Night Rain

Fig. 3: Appearance change from the day condition into three other conditions.
We observe that our method is able to take images at one condition and generate
new views of that scene at the three other conditions by changing the overall
visual appearance of the images to match the desired condition and by making
local changes such as turning on street lamps.

This loss enforces that when inputting source views Is,c from the condition c
together with the latent appearance variable zc′ of the condition c′, then the
predicted color C(r, Is,c, zc′) should match the ground truth color Ĉ(r, It,c′) for
the corresponding target images It,c′ , making it possible for the method to learn
to adapt the appearance to match a target condition. If the condition for the
target image It,c corresponds to that of the source images Is,c, then this becomes
a traditional reconstruction loss Lrec, and our full loss is L = Lrec+Lappearance.
Rendering images with changed visual appearance is done by computing the
rendered color C(r, Is,c, zc′) for all pixels in an image, giving as input source
views from one condition and a latent variable zc′ corresponding to the desired
target condition.

4 Experiments

Qualitative and quantitative experiments are performed to test our method’s
ability to adapt the visual appearance of real and synthetic scenes that have not
been seen during training.

Dataset. The used dataset is generated using the autonomous driving simulator
CARLA [10], which enables the generation of synthetic images within a simu-
lated city environment along with their ground truth camera poses. Additionally,
weather and lighting conditions can easily be changed.

For our experiments, four conditions were defined, corresponding to night,
day, rain and evening. A scene was defined as a sequence of 10 observations taken
along a road. With four different conditions, this led to a total of 40 images per
scene. All generated images are 800×600 pixels. The CARLA map was split into
two regions, one to generate 145 training scenes, and the other to generate 38
evaluation scenes, ensuring separation between training and evaluation scenes.
This dataset alongside the code will be made publicly available. We also show
qualitative examples evaluating our trained model on scenes from the Spaces
dataset [12] to show that our method can generalize to real images.
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Instruct-NeRF2NeRF

Ground Truth - Night

Fig. 4: Comparing our method with Instruct-NeRF2NeRF [15] as well as applying
different 2D style transfer methods on rendered images. We note that Instruct-
Pix2Pix [3] effectively generates realistic 2D edits; however, it exhibits significant
inconsistencies that Instruct-NeRF2NeRF fails to consolidate in 3D, leading to
an unrealistic appearance. Only our method, Pix2Pix-HD [44] and Palette [32]
learn to turn on the street lamps. SANet [28] and CyEDA [2] achieve better
structure preservation with some noticeable artifacts. The diffusion models Dif-
fuseIT [22] and Instruct-Pix2Pix [3] can provide visually plausible results for
individual images, but there are hallucinations that do not exist in the origi-
nal images, leading to multi-view inconsistencies. Palette provides more realistic
images, but it is however lacking in temporal consistency. Comparisons for ad-
ditional conditions can be found in appendix D.

Implementation. The model was initialized with weights from a GNT network
pretrained on a combination of synthetic and real data [35]. The model was
trained to perform visual appearance change using the 145 training scenes from
the introduced CARLA dataset, including the proposed appearance change loss
term (3). The training was performed on a single A100 GPU, taking approxi-
mately 8 hours, and the method was then able to generalize to scenes not seen
during training. Note that the model was trained for all training scenes at the
same time, and there is no scene-specific training for the test scenes. When we
test the model, we only use images of the test scene in the source condition Is,c
and not any images of the test scene in the target condition c′ ̸= c.

Baselines. The GAN-based methods, such as Pix2Pix-HD [44], BicycleGAN [50],
NICE-GAN[6], and CyEDA [2], along with the diffusion model-based method
Palette [32], have been retrained using our synthetic dataset. The reference-based
methods, DiffuseIT [22] and SANet [28], are capable of performing image transla-
tion using a reference images at the target condition from the synthetic dataset.
Instruct-Pix2Pix [3] is pre-trained on editing images based on text prompts and
was not retrained on our synthetic dataset.

Furthermore, we compared our method with the Instruct-NeRF2NeRF [15]
model, utilizing the official implementation that employs the Nerfstudio [37]
Nerfacto NeRF model. Due to the unsatisfactory quality of the Nerfacto models
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Table 1: Comparison of similarity of rendered views for our method with ground
truth images for all combinations of weather and lighting conditions (PSNR↑ |
SSIM↑ | LPIPS↓). The values along the diagonal correspond to novel view syn-
thesis without appearance change. The off-diagonal values correspond to evalu-
ating novel views with changed visual appearance to match the target condition.

From Day From Night From Evening From Rain

Into Day 23.9 |0.77 |0.60 15.3 |0.56 |0.62 16.7 |0.64 |0.61 15.7 |0.59 |0.60
Into Night 21.0 |0.56 |0.55 27.4 |0.68 |0.57 20.7 |0.54 |0.55 21.2 |0.57 |0.55
Into Evening 24.1 |0.75 |0.58 20.0 |0.62 |0.57 25.4 |0.76 |0.58 21.4 |0.69 |0.57
Into Rain 23.4 |0.71 |0.58 21.7 |0.66 |0.57 21.3 |0.69 |0.56 26.8 |0.78 |0.58

Table 2: Qualitative comparison of rendering quality against 2D style transfer
methods (PSNR↑ | SSIM↑ | LPIPS↓). We observe that our method outper-
forms all 2D style transfer methods on these metrics, with significant increases
in performance on PSNR and SSIM for most scenarios

Type Method Scenarios
Day to Night Day to Evening Day to Rain Night to Day Evening to Day Rain to Day

Non-
diffusion

Pix2Pix-HD [44] 19.7 |0.36 |0.565 18.4 |0.35 |0.603 19.7 |0.53 |0.582 13.8 |0.40 |0.629 15.3 |0.46 |0.619 13.9 |0.43 |0.629
BicycleGAN [50] 19.0 |0.38 |0.556 18.8 |0.41 |0.587 22.7 |0.66 |0.578 14.2 |0.47 |0.630 15.9 |0.56 |0.627 15.0 |0.54 |0.630
NICE-GAN [6] 18.3 |0.29 |0.553 18.8 |0.39 |0.589 20.8 |0.56 |0.583 12.9 |0.29 |0.626 14.6 |0.45 |0.618 14.3 |0.47 |0.624
CyEDA [2] 17.9 |0.32 |0.556 18.8 |0.40 |0.597 20.0 |0.67 |0.579 11.7 |0.47 |0.625 14.0 |0.59 |0.633 12.3 |0.53 |0.634
SANet [28] 18.9 |0.50 |0.571 20.2 |0.64 |0.606 20.1 |0.66 |0.581 14.5 |0.52 |0.629 15.5 |0.59 |0.618 12.6 |0.45 |0.616

Diffusion
Models

Palette [32] 19.4 |0.42 |0.577 20.6 |0.54 |0.618 22.6 |0.66 |0.601 12.1 |0.41 |0.689 9.8 |0.38 |0.688 9.8 |0.38 |0.695
DiffuseIT [22] 17.1 |0.32 |0.594 17.2 |0.44 |0.627 16.0 |0.43 |0.613 11.2 |0.35 |0.626 12.3 |0.38 |0.618 11.8 |0.35 |0.625
Instruct-Pix2Pix [3]1 15.9 |0.34 |0.579 14.3 |0.53 |0.653 14.1 |0.53 |0.638 11.5 |0.46 |0.647 8.7 |0.34 |0.674 13.4 |0.52 |0.640
Ours 21.0 |0.56 |0.549 24.1 |0.75 |0.585 23.4 |0.71 |0.577 15.3 |0.56 |0.624 16.7 |0.64 |0.615 15.7 |0.59 |0.602

when using 10 images, we increased the number of images in the sequence to 25
images. More details can be found in appendix C.

Qualitative Results. Our model is evaluated on the 38 evaluation scenes not seen
during training. The method is capable of synthesizing novel views using only a
set of images with corresponding camera poses. Furthermore, it is able to adapt
the visual appearance of the scene to specified weather and lighting conditions,
without having access to observations of the scene under those target conditions.
We show several qualitative examples of this. Fig. 3 shows that our method is
able to change the visual appearance of images to match a target weather and
lighting condition, and Fig. 4 shows a comparison with other methods.

It also becomes possible to interpolate between two latent variables corre-
sponding to different conditions by defining zα = αzc + (1−α)zc′ for α ∈ [0, 1].
In Fig. 5, we observe that this enables getting realistic intermediate visual ap-
pearances that are not included in the original images. The model trained on
appearance change of synthetic scenes can also be applied to change appearance

1 Instruct-Pix2Pix is pre-trained on editing images based on text prompts and was
therefore not retrained on our synthetic dataset.
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Table 3: Quantitative comparison of the consistency of novel view rendering
against 2D style transfer methods and instruct-NeRF2NeRF (tOF↓ | tLP↓ [7]).
We can observe that our method significantly outperforms most of the 2D meth-
ods. Please see our project page for a video illustrating the rendering consistency:
https://ava-nvs.github.io

Type Method Scenarios
Day to Night Day to Evening Day to Rain Night to Day

Non-diffusion

Pix2Pix-HD [44] 2.59|0.147 1.58|0.169 1.60|0.030 2.49|0.078
BicycleGAN [50] 5.13|0.053 4.79|0.083 5.10|0.024 5.20|0.047
NICE-GAN [6] 1.93|0.040 1.24|0.081 1.25|0.014 2.09|0.055
CyEDA [2] 1.62|0.027 1.21|0.115 0.96 | 0.022 1.25|0.032
SANet [28] 2.37|0.069 2.05|0.097 1.73|0.088 2.01|0.092

Diffusion
Models

Palette [32] 10.12|0.115 7.21|0.109 8.41|0.057 18.77|0.050
DiffuseIT [22] 24.62|0.236 29.23|0.242 27.43|0.166 29.75|0.188
Instruct-Pix2Pix [3] 1.62|0.123 1.37|0.121 1.45|0.088 1.48|0.092

NeRF Editing IN2N [15] 7.29|0.137 6.09|0.085 5.65|0.051 - | - 1

Ours Ours 1.44|0.026 1.10|0.035 0.97|0.013 1.25|0.032

of real scenes [12], as seen in Fig. 6 where we can see realistic appearance changes
even though the model is not trained on any scenes from that dataset.

Quantitative Results. We now show quantitative rendering quality results. We
show PSNR, SSIM [45] and LPIPS [48], where the images with changed ap-
pearance are evaluated against the corresponding ground truth images for the
target weather and lighting conditions. In Table 1, we show how our method
performs on all possible combinations of source and target conditions. Using
the same source and target conditions corresponds to novel view synthesis with-
out appearance change, which, as expected, gives better metrics, but the gap
is small for some combinations, e.g. comparing Day into Evening with Evening
into Evening. In Table 2, we compare our method with several 2D style transfer
methods. We see that our method outperforms the 2D methods on the perfor-
mance metrics for all combinations. We observe that performance varies for the
different conditions and that adapting images from another condition into day
is the most challenging, while transforming from day gives significantly higher
performance for all methods. A comparison against Instruct-NeRF2NeRF [15]
was also performed, but results varied largely for different scenes and prompts.
Further details are included in appendix C.

We show two consistency metrics [7] in Table 3. If (x1, . . . , xn) and (y1, . . . , yn)
are two image sequences rendered from the same pose sequences, we define
tOF = ∥OF(yt+1, yt) − OF(xt+1, xt)∥1, where OF is the optical flow computed
via RAFT [38] and tLP = ∥LPIPS(yt+1, yt) − LPIPS(xt+1, xt)∥1. The metrics
are low if the reference images and the rendered images yield similar optical

1 We could not get satisfactory renderings for this condition, more details can be found
in appendix C.

https://ava-nvs.github.io
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Fig. 5: Gradually changing visual appearance by interpolating between latent
appearance variables corresponding to day and night. The first row corresponds
to latent variables generated with a given structure, enforcing that the evening
condition lies between day and night in the latent space, and the second row
corresponds to a learned latent variable with no enforced structure. Given im-
ages at one appearance condition our method is able to smoothly transition the
appearance to match a different weather and lighting condition, generating plau-
sible intermediate visual appearances. Additional results for interpolation can be
seen in the video on the project page: https://ava-nvs.github.io

flow and similar changes in LPIPS, which is assumed to correspond to a consis-
tent rendering. We observe that our method significantly outperforms most of
the 2D style transfer methods. Notably, Instruct-NeRF2NeRF exhibits poorer
consistency results than anticipated, primarily stemming from two key factors.
Firstly, the NeRF models generate low-quality novel views for some scenes. Sec-
ondly, there are inconsistent appearance changes in response to certain prompts,
which results in unrealistic alterations that do not clearly preserve the scene
content. CyEDA gives comparable consistency metrics for some scenarios, but
gives less realistic rendered views as seen in Fig. 4 and Table 2.

Ablation Study. We compare two different ways of learning latent appearance
variables zc ∈ Rd. One approach is to initialize a random d-dimensional vector
with no enforced structure for each condition as a learnable parameter that is
optimized jointly with the rest of the model. Another approach is to enforce
structure by representing each condition as a fixed 2D-coordinate, placing them
such that the evening condition is in between day and night, based on the as-
sumption that one should pass through evening when going from day to night.
These fixed 2D coordinates are then fed through a small learned fully-connected
network to generate zc. Comparing the performance metrics for these two ap-
proaches, as can be seen in Table 4, shows that both approaches give similar
performance. However, enforcing a structure on the latent space leads to more
realistic lighting effects when interpolating, as can be seen in Fig. 5, giving the
appearance of a sunset. Based on this, it was decided to use the latent appear-

https://ava-nvs.github.io
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Day NightEvening

Fig. 6: Visual appearance change applied on a daytime scene from the Spaces
dataset [12]. We observe that our method is able to make realistic appearance
changes, such as adding sunlight on the background and light reflections in the
windows for the evening condition and removing shadows for the night condition,
without being trained on any scenes from this dataset.

Table 4: Ablation Study comparing two approaches for generating latent appear-
ance variables, comparing the similarity of rendered views with ground truth
images (PSNR ↑ | SSIM↑ | LPIPS↓). We observe that both approaches give
similar performance for changing appearance from one condition to another.

Latent Variables Scenarios
Day to Night Day to Evening Day to Rain Night to Day

Enforced structure 21.0|0.56|0.55 24.1|0.75|0.58 23.4|0.71|0.58 15.3|0.56|0.62
No enforced structure 21.6|0.57|0.55 23.2|0.71|0.57 22.8|0.70|0.55 15.3|0.56|0.61

ance variable with the enforced structure for our experiments. The choice of
dimension d = 136, for the latent appearance variable, was made by observing
that a higher dimension leads to a better ability to handle local appearance
changes, such as turning on street lamps and removing shadows. More details
and qualitative examples can be found in appendix B.

5 Conclusions

We present a transformer based generalizable novel view synthesis method that
allows for change of visual appearance without any scene-specific training. This
is achieved by introducing a latent appearance variable that is used to change
the visual appearance to match a given weather and lighting condition while
keeping the scene structure unchanged. We also introduce a synthetic dataset
based on CARLA for training and evaluating the methods and present exper-
iments that show that this method is able to change the visual appearance of
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both synthetic and real scenes, to match a specified weather and lighting con-
dition without any scene-specific training. The generated latent variables also
make it possible to smoothly interpolate between different weather and light-
ing conditions. Compared to 2D style transfer, our method is view consistent
by design. We experimentally show that our method outperforms multiple 2D
style transfer methods, both in terms of rendering quality and that the rendering
of nearby views are more consistent. A comparison with Instruct-NeRF2NeRF
shows that our method is more robust in providing desired appearance changes
while ensuring multi-view consistency and preserving scene content. Our gener-
alizable approach is also more flexible, not requiring training a NeRF model for
each scene, and also allows using fewer input images.
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Appendix

A supplementary video is available at https://ava-nvs.github.io. The video re-
sults are discussed in A. In B we give more detail regarding the generation of
latent appearance variables. In C we give additional details regarding the com-
parison with Instruct-NeRF2NeRF[15]. In D we show qualitative comparisons
for additional scenarios.

A Video

The supplementary video presents additional findings regarding interpolation,
demonstrating our method’s capacity to given images at one appearance con-
dition smoothly transition the appearance to match a different weather and
lighting condition while ensuring multi-view consistency.

Furthermore, the video includes a temporal consistency comparison with ap-
plying 2D style transfer on rendered images, for the Day to Night scenario. Our
observations reveal that nearly all 2D methods exhibit some degree of flickering
and temporal inconsistencies, with DiffuseIT [22] displaying the most signifi-
cant issues, frequently hallucinating objects or structures. CyEDA [2] appears
to generate random unexpected bright spots. Of the 2D methods only Palette [32]
successfully learns to fully activate street lamps, but noticeable pixel intensity
fluctuations result in inconsistent renderings. In contrast, our method delivers
both multi-view consistency and realistic lighting changes.

Finally the video also contains a comparison with the Instruct-NeRF2NeRF
method for the Day to Night and Day to Rain scenarios. We can observe that
Instruct-NeRF2NeRF method gives multiview consistent renderings, but it strug-
gles with increased blurriness and cloudy artifacts. We can for the Day to Night
scenario observe that the method struggles with clearly preserving the scene
content. More details about the Instruct-NeRF2NeRF comparison can be found
in the next section, including results for additional prompts.

B Generating Latent Variables

We propose two approaches for generating latent appearance variables zc ∈ Rd.
One approach is to initialize a random d-dimensional vector for each condition
and then include it as a learnable parameter that is optimized jointly with the
rest of the model. In this case, the latent variables are fully learned with no
enforced structure.

Another approach is to enforce structure on the latent appearance variables
by defining fixed 2D-coordinates c corresponding to each condition that is then
passed through a small fully-connected network to generate zc = fz(c), where
the parameters of this additional fully-connected network are learned jointly with
the rest of the model. For our case with four weather and lighting conditions,
we define the fixed 2D coordinates as shown in Fig. 7. The reason behind this

https://ava-nvs.github.io
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Fig. 7: Chosen fixed 2D coordinates for each condition, ensuring that one passes
through the evening condition when interpolating between the day and night
conditions. Rain is placed on a separate axis since it corresponds to appearance
change not directly connected to variations in daylight.

placement is to get the desired behavior when interpolating between two condi-
tions, ensuring that the evening condition is passed through when interpolating
between day and night conditions, and places rain on a separate axis since it
corresponds to appearance change not directly connected to variations in day-
light. The fully connected network fz(c) takes in a 2D coordinate corresponding
to a condition and outputs a latent appearance variable zc of dimension d. For
the performed experiments, we used d = 136, and two hidden layers of size 16
and 68, respectively. The choice of d was made after testing different values and
observing that a higher dimension leads to better ability to handle local appear-
ance changes such as turning on lamps and removing shadows, as seen in Fig.
8.

Comparing performance metrics for learnable latent variables with no en-
forced structure in Table 5 with the ones in Table 1 where latent appearance
variables with enforced structure are used, shows that both approaches for gener-
ating the latent variable zc give similar performance when changing appearance
from one condition to another. However, enforcing a structure on the latent space
leads to more realistic lighting effects when interpolating between two conditions,
as can be seen in Fig. 5, giving the appearance of a sunset. Based on this, it was
decided to use the latent appearance variable with the enforced structure for our
experiments.
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d = 2 d = 16 d = 136

Fig. 8: Qualitative comparison of rendered views with changed appearance for
different sizes d of the latent appearance variable zc. We observe that a higher
value of d leads to better local appearance changes in rendered views, such as
turning on street lamps and removing shadows.

C Comparison with Instruct-NeRF2NeRF

We used the official Instruct-NeRF2NeRF implementation. This implementa-
tion uses the Nerfstudio [37] Nerfacto NeRF model. The quality of the Nerfacto
models when using 10 images was very poor, so we increased the number of im-
ages in the sequence to 25. There were still issues of the quality of the rendered
views for some scenes, especially for the night scenes, as can be seen in Fig. 9.
This is the reason why consistency metrics for the Night to Day scenario for the
Instruct-NeRF2NeRF method are not included in Table 3.

Example input 
night image Example Renderings from night NeRF models

Fig. 9: Renderings from Night time NeRF scenes were of very low quality, so
consistency metrics were therefore not computed for the Night to Day condition.

Figures 10 and 11 show results for Instruct-NeRF2NeRF for additional
prompts. This shows that the quality of rendered views can vary strongly based
on the prompt that is used, and some prompts such as "Make it midnight"
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Table 5: Comparison of similarity of rendered views when using learnable latent
variables with no enforced structure. Comparing with ground truth images for all
combinations of weather and lighting conditions (PSNR↑ | SSIM↑ | LPIPS↓).
The values along the diagonal correspond to novel view synthesis without ap-
pearance change.

From Day From Night From Evening From Rain

Into Day 23.3 | 0.76 | 0.61 15.3 | 0.56 | 0.61 16.4 | 0.61 | 0.60 15.9 | 0.61 | 0.61
Into Night 21.6 | 0.57 | 0.55 28.1 | 0.73 | 0.55 21.1 | 0.56 | 0.54 21.4 | 0.58 | 0.55
Into Evening 23.2 | 0.71 | 0.57 19.9 | 0.47 | 0.58 23.1 | 0.55 | 0.57 20.3 | 0.50 | 0.57
Into Rain 22.8 | 0.70 | 0.55 20.9 | 0.66 | 0.56 21.3 | 0.69 | 0.57 23.1 | 0.55 | 0.58

and "Make it stormy" led to the scene content almost completely disappearing.
The figures also show that the same prompt can result in differing appearance
changes when used on different scenes, e.g. the prompt "Turn it into evening"
leads to images with very different color schemes for the two different scenes.
In contrast our method gives similar types of appearance change for different
scenes.

D Comparisons for additional scenarios

We further compare against other methods for additional scenarios, including
Day to Evening (Fig. 12), Day to Rain (Fig. 13), and the most challenging
scenario Night to Day (Fig. 14). Our method is able to clearly preserve content
and 3D consistency while making appropriate adjustments to the appearance
of the scene. For instance, we effectively eliminate shadows from images for the
Day to Evening scenario. In the Day to Rain scenario, our model maintains
scene content while altering visual appearance, ensuring multi-view consistency.
Lastly, our model can even learn to deactivate interior lighting in buildings in
the most challenging Night to Day scenario.
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“Make it evening” “Turn it into evening” “Make it sunset”

“Make it night” “Turn it into night” “Make it midnight”Ours - Night

Ours - Evening

“Make it rain” “Turn it into a rainy day” “Make it stormy”Ours - Rain

Instruct-NeRF2NeRF

Fig. 10: Comparing Instruct-NeRF2NeRF for different prompts.

“Make it evening” “Turn it into evening” “Make it sunset”

“Make it night” “Turn it into night” “Make it midnight”Ours - Night

Ours - Evening

“Make it rain” “Turn it into a rainy day” “Make it stormy”Ours - Rain

Instruct-NeRF2NeRF

Fig. 11: Comparing Instruct-NeRF2NeRF for different prompts.
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Instruct-NeRF2NeRF

Ground Truth - Evening

Fig. 12: Comparison with other methods for Day to Evening scenario.

Ground Truth - Rain

Instruct-NeRF2NeRF

Fig. 13: Comparison with other methods for Day to Rain scenario.
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Ground Truth -  Day

Instruct-NeRF2NeRF

Fig. 14: Comparison with other methods for Night to Day scenario. We observe
that the main reason for the Instruct-NeRF2NeRF methods low quality for this
scenario is lacking quality in the Nerfacto [37] NeRF models trained on night
images.
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